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In past discussions of the thermal stability of a wall heated by convection and cooled by boiling, the thermal
capacitance of the wall has been lumped at a single point in the wall and the thermal resistance of the wall
has usually been neglected. A more complete analysis, considering the distribution of resistance and capaci-
tance through the wall, shows that the lumped analysis may lead to spurious or erroneous conclusions and
that the wall resistance has a destabilizing effect on the system. Specifically, for a flat wall stability requires
that —M < 1/[(xz — x1/k) + (1/h)]. For a hollow circular cylinder with boiling on the outside, —k/Mr; >
k/hy 4 In{r2/r)), and with boiling on the inside, —k/Mr; > k/hrz + In (r2/r1). M is the slope of the boiling curve,
h is the convective heat transfer coefficient, (xs — xy) is the thickness of the flat wall, r; and r2 are the inside
and outside radii of the cylinder, respectively, and k is the thermal conductivity of the wall.

In the design of heat transfer equipment it is desirable that
a small change in any single operating parameter produce a
corresponding small change in the other system parameters;
Z.e., it is desirable that the system possess the characteristic
called “stability.” The condition for the thermal stability
of a heated wall, as first presented by Adiutori (1964), may
be expressed as

dT, — dTw
where ¢, is the rate of heat removal from the wall, ¢ is the
rate of heat addition to the wall, and Ty is the temperature
of the wall. This condition is satisfied in most thermal
designs since the left-hand term is usually negative and the
right-hand term is usually positive. The one notable excep-
tion occurs in the design of devices cooled by boiling. In
the transition region of boiling the heat flux decreases with
increasing surface temperature and, as a consequence, this
region is unstable under many ordinary design conditions.

To apply eq 1 to a specific thermal design problem in-
volving boiling and to predict the system behavior under
unstable conditions it is necessary that the slope of the boiling
curve be known in the transition region. Wallis and Collier
(1967) applied eq 1 to several different design situations, and
their results indicate that a convectively heated wall might
be used to obtain data in the transition region. As normally
presented, the heat input to the wall is

¢ = T — Tw) 2
where % is the convective heat transfer coefficient between the

hot fluid, at temperature T, and the wall, at temperature
T.. Then
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where 3 is the local value of the slope of the boiling curve

where ¢, = g¢i, t.e., under equilibrium conditions. The
stability criterion is, from eq 1
h>-M ®)

In the transition region near the peak heat flux M is negative
and is apparently quite large. Stability, then, requires a
very large value of A.

The crucial point in the preceding analysis is that eq 1 is
valid only if all of the thermal capacitance of the wall is
lumped at T'; t.e., it is valid only if the thermal resistance of
the wall is neglected. A more rigorous analysis must include
the wall resistance and must treat the capacitance as a
distributed parameter.

Analysis

Consider the general problem of one-dimensional heat
conduction through a shell of constant thickness. Let the
position coordinate of a surface parallel to the bounding
surfaces of the shell be s. Then, from Figure 1, the governing
differential equation for heat transfer by conduction is

PO OT(st) 1 dEMAE) dT(t) | ¥T(s)
k) ot k(A(s)  os 2s T o

©

If the heat flux at the surfaces is specified as a function of
surface temperature the boundary conditions may be speci-
fied as

oT

oo = —ke( 2l @
oT

ATE)0) = —k(s»( b(z")l_, ®

where ¢(T'(s),t) is defined as being positive in the direction of
increasing s.




To examine the stability of 7'(s,t) as defined by eq 6, 7,
and 8, assume a steady solution 7(s) which satisfies eq 6, 7,
and 8 and to T"(s) add a small perturbation AT (s,) such that

T(s,t) = T'(s) + AT(s,t) ©
and such that
AT (s,8) ~ €™'f(s) (10)

T (s,t) will be stable for negative values of @ and unstable for
positive values of a. For a discussion of complex values of a
see Wallis (1970). Determination of the stability of T'(s,f) can
now be made by examining the possible solutions of eq 6, 7,
and 8 of the form given by eq 9 and 10. If positive values of a
are possible T'(s,t) will be unstable.

Substituting eq 9 and 10 into eq 6, 7, and 8 gives

o, 1 aBeAG) aw
ds k()A(s) ds ds
"(Z)(:)(s> ca i =0 (1)
and
(s a“;’;”g; ) k<s2)<df(”))._h s

Equation 11 is of the general form

daf df
O Ty

fs) =0 (14)

and a complete general solution is not known. However, if
constant properties are assumed and if consideration is given
only to surfaces such that

A(s) = Cs" (15)

eq 11 becomes

&) mdf
dsf) +2 71(8—8') ~ 2 = 0 (16)

or
fﬂ[(w%ﬁ)} - gs” f(s) = 0 a7

Solutions to (17) are generally available in terms of ex-
ponential functions (n = 0, a > 0), trigonometric functions
(n = 0,a < 0), Bessel functions (n > 0, a < 0), or modified
Bessel functions (n > 0, @ > 0). Two cases are of particular
interest, the flat wall (C'= 1,7 = 0) and the circular eylinder
(€ =2r,n=1).

The Flat Wall

Consider a flat wall heated by convection on one surface
and cooled by boiling on the other surface. Substituting x for
s, eq 17 becomes

T ;f(z) =0 (18)
with boundary conditions
df(z)
hf(x) = k( i )x_n (19)
df(z)
e = (),

Figure 1. Math model

where h is the convective heat transfer coefficient at one
surface and M is the slope of the boiling curve at a surface
temperature T (x.). If eq 18 has solutions for positive values of
a which satisfy boundary conditions (19) and (20), the wall
will be thermally unstable; .., the perturbation AT (z,t) will
increase exponentially with time.

For posxtwe values of a the general solution to (18) is

f(z) = Befz + Fe~f= - @1)

where % = a/a. Substitution into boundary conditions (19)
and (20) yields

e
£28@—21) m (22) =

If eq 22 has a real nonzero solution for 8, a will be positive
and instability will result.’

To investigate eq 22, plot its left- and right-hand sides as
functions of 8. The right-hand side equals unity if 8 = 0, or
+ o, has zeros at 8 = h/k and 8 = M/kand poles at B =
—~h/k, 8 = M/k. Figure 2 shows that if & and M are both
positive there is no solution other than g = 0.

If M is negative, however, the form of the solution depends
on the relative magnitude of » and M. If —M > h the result
is shown in Figure 3. There are always two solutions and the
situation is therefore unstable. This means that if

-M>h (23)

boiling is unstable whatever the values of k£ and (z2 — 1) may
be. This is the same as the stability criterion given by eq 5
from the simplified analysis.

The interesting case occurs when —M < h. There is then
the possibility of either stability or instability. Figure 4 shows
the situation. Roots, other than the trivial case of 8 = 0, are
possible only if the slope of the dashed line is less than the
slope of ?#@1=2D gt g = 0,

The slope of the dashed line may be evaluated by dif-
ferentiating the right-hand side of eq 22. At 8 = 0 the value is
—2k(1/M + 1/h). The wall will therefore be stable if

1 1
2@ — @) < ~2k (ﬂ + i)
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Figure 2. Solution of eq 22 for positive values of h and M

FUNCTION

I

|

| I

| \

1 i
\ \
\ 1
1 1
i \
1

\
\
\\ \ e28{X2-Xp)
1 \
\ ~,

NI -
_:_:Z-f\,/ .
$"~ AL ¢
¥t N TE
\ AY

\ A

\
\ \
\ \
\ 1
\ 1
] 1

|

! |

| |

! 1

1

[

! [

I |

Figure 3. Solutions of eq 22 for posmve h and negative M
(=M > h)

-M < -1— (24)
Ty — T

. 2

This isa “tighter” criterion for k& than eq 23 and indicates that
the wall resistance has a destabilizing effect. This criterion was
used by Wallis (1965) in analyzing Berenson’s data. In a
later publication Audiutori (1965) included the wall re-
sistance in a discussion of evaporator design. Neither author
formalized the stability requirements imposed by eq 24.

" Hollow Circular Cylinder

" Replacing s by # for a hollow circular cylinder, eq 17
: ‘becomes

d @) a
g &;[r dr] a-r‘f('r)=0 (25)
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Figure 4. Solutions of eq 22 for positive h and negative M
(—M < h); two alternatives are shown

subject to boundary conditions

a0.(R() )

t0 SR 0y (42 ) 26)
dos(R() ae)

iy = +e (5., e

If the cylinder is heated on one surface by convection and
cooled on the other by boiling, the boundary conditions

become
df
() = ( d(:)),_,. @9
Mf(ry) = -—k(%(:))’_“ . (29)

where & is the convective heat transfer coefficient and M is
the slope of the boiling curve at a temperature T'(rs). The
solution to eq 25 for positive values of a is

f(r) = AL(Br) + BKo(gr) (30)

where, again, 82 == a/a. Application of this solution to bound-
ary conditions (28) and (29) gives

hEo(Bry) + k6K(Br) _ MEo(grs) — kBKi(Br:)

WIuBr) — RoL(Br) ~ MIo(pr) + beLugr) D
or, in more convenient form
Io(ZR) + b.ZRI;(ZR) _ KoZR) — b,ZRK\(ZR) 32) -

I1y(Z) — biZI(Z) Ko(Z) + 0ZK:(Z)

where by = k/hry, by = k/Mre, Z = Br,and R = ry/ny.

For positive values of b, and b, the left-hand side of eq 32
has a pole at Z = I4(Z)/(b:-1:(Z)) and no zeroes while the
right-hand side has a single zero at Z = Ko(ZR)/(b:- K1(ZR))
and no poles. The situation is shown in Figure 5. There is no
solution for Z and the system will be stable.

For negative values of b the left-hand side of eq 32 hasa -
zero at Zo = —I(ZR)/(bs-R-1,(ZR)) and a pole at Z, =
1,(Z)/(b:1(Z)). The right-hand side has neither zeroes nor
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Figure 5. Solution of eq 32 for positive valves of h and M
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Figure 6. Solution of eq 32 for positive h and negative M
(z, < Zy)

poles, is always positive, and approaches zero as n limit with
increasing Z. Two situations are possible, depending upon the
relative magnitudes of Zp and Z,. If Z, < Z, the situation
shown in Figure 6 occurs. There is always a real root and the
system is unstable. If Zy < Z,, on the other hand, Figure 7
shows that the system may be stable or unstable depending on
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Figure 7. Solution of eq 32 for positive h and negahve M
(Z, > Zy); two alternatives are shown :

the exact shape of the curves near Z = 0. In any case, &
necessary (but not sufficient) condition for stability is

Zo < Zy (33)

Numerical evaluation of Z, and Z, for various values of b; and
b, with R > 1 revealed that equality occurred in eq 33 for
values of — (b; + by) less than zero. '

In order to establish a necessary condition for stability
when eq 33 is satisfied, the behavior of both sides of eq 32
must be studied as Z — 0. Both sides approach 1 with a first
derivative of zero. Further differentiation reveals that the
second derivatives are also equal. Rather than continue the
lengthy differentiation process, it is simpler to examine the
behavior of eq 32 near zero by substituting power series
approximations for the Bessel functions. After considerable
algebraic manipulation, retaining terms of second order only,
eq 32 becomes

[ 1
(bl+bz+lnR)+§[—§(R’—1)—l—
bl{—lnR+%(Rs~ 1)}+

b, {R” InR — % (R — 1)} + biby/(R? — 1)] =0 (34

Clearly, near Z = 0, (b, + by + InR) — 0.

Stability will occur if the solution of eq 34 yields imaginary
values of 7, t.e., if the coefficient of Z* has the same sign as
(b + b + In B). Accordingly, substitution of by = —(by +
In ) into the coefficient of Z3/2 gives, for this coefficient
—b3R* — 1) + bi(R* —~ 2R*InR — 1) +

1 N
3 R*=1 (InR—-1)—R*In*R
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Figure 8. Schematic for lumped analysis: (a) flat wall; (b)
circular cylinder
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Figure 9. Srabdny envelopes for a convectively heated pool
boiling system in the transition region

" The maximum value of this coefficient willbe <0 if
(R*—2R*IhR - 1)< —4(R*—1) X

[3& - DR =1 - Bo1e R

=@ -1+ 2l RQ +2R*InR ~ RY <0
The first term in the above expxessmn is always negative and

u'(ahe second term is negative for B >"1, Therefore, the co-
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efficient of Z% in eq 34 is negatwe nea,r nhe'its.bnhgy unt ary '
for all values (positive or negative) of b anid :

for stability: b + b + In B <50 : (35&)
for instability: by + by + In Rq> 0 » (35b)
Remembering that b, is negative, eq 352 may be written as
k T2 .
= Mn > o + In " 5 (86)

Equation 36 is a “tighter” criterion for stability than eq 33
and is, apparently, both necessary and sufficient. :

The arguments leading to cq 35 are equally valid if b,
rather than by, is negative. In this case the stability condition
for boiling inside the cylinder may be obtained by inter-
changing the roles of 3 and & and is

k T2
~ 171 -I— ln (37)

Alternate Analysis, Lumped Parameter

An alternate approach is to approximate the system by
lumping the heat capacity of the wall at a particular place.
For a flat wall the lumped capacitance can be placed at any
point in the wall as shown in Figure 8a. Wallis (1970) has
shown that the resulting analysis indicates instability in the

range
1 - 1 T—m T -
<h+ k )T"Mi( r Tk ) ©8)
o

The lumped model agrees with the continuum model only if
the capacitance is lumped at x, so that z = a,, ‘Otherwise, the
lumped model produces the spurious conclusion indicated by
the right-hand inequality in eq 38. Applying the same type of
analysis to a circular cylinder, with reference to Figure 8b,
again gives agreement with the continuum analysis only if the

capacitance is lumped at the boiling surface:

" Experimental Verification

Obviously, eq 24, 36, and 37 place severe limitations on the
use of convectively heated surfaces in transition region boiling.
Values of M near the peak heat flux seem to be typically
about —1 X 10* Btu/hr ft?°F. Referring to eq 24, (2, —
x1)/k, the wall resistance must, then, be less than about 1 X
10~ hr ft>°F/Btu for stability throughout the transition
region even if A — ., A flat steel plate 0.1 in, thick hasa wall
resistance of about 5 X 10~ hr ft2°F/Btu and a flat copper
plate 0.25 in. thick has a wall resistance of about 1 X 104
hr ft?°F/Btu. A stability envelope based on the application
of eq 24 to a typical pool boiling curve will be similar to
Figure 9 with (2: — z1)/k > 0. Systems of this type using thick
surfaces are obviously inappropriate for investigations of the
transition region. This effect is evident in the data presented
by Berenson (1962) and in the data shown in Figure 10,

Equation 24 was applied to Berenson’s data for runs 17 and
22 and for runs 2 snd 3 for pentane boiling on the top surface
of a copper disk. The disk was 2.25 in. thick and was heated by
steam condensing on the bottom surface. Assuming the con-
densation heat transfer coefficient to be infinite, and using

- Berenson’s straight line interpretation of the transition region

on a log-log plot, the unstable range for runs 17 and 22 was
predicted to be 16-37°F. No data were reported in the range
of 16F'-43°F. The results were similar for runs 2 and 3 with a
predicted range of 85-107°F and a measured range of 85~
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Figure 10. Pool boiling curve for methanol on a copper
surface

105°F. The limitations imposed on Berenson’s data by the
high wall resistance were first discussed by Wallis in his
comments on Audiutori’s original paper.

The data shown in Figure 10 were obtained from the ap-
paratus shown schematically in Figure 11. The heated surface
was a copper disk 3 in. in diameter and 0.125 in. thick. The
disk was heated by saturated steam impinging on the bottom
surface and was cooled by boiling methanol on the top surface.
The top surface temperature was measured by using a small
coaxial copper-constantan thermocouple as shown in the
schematic diagram. Heat fluxes were determined by measuring
the flow rate and temperature rise of cooling water flowing
through a reflux condenser attached directly to the top of the
boiling chamber. The significant aspect of the data obtained
from this test is the complete absence of data between 55 and
70°F superheat. Figure 12 shows the stability envelopes ob-
tained by applying eq 24 to the boiling curve shown in Figure
10, assuming (z: — 1)/k = 0.0 and also taking (z2 — z1)/k =
5.0 X 1078 hr ft2°F/Btu, the approximate resistance of the
copper disk. The shape of the stability envelope depends
strongly on the exact shape of the boiling curve and, con-
sidering the scatter associated with most boiling measure-
ments, there may be many different curves drawn from the
same data. Figure 12 does, however, clearly demonstrate the
significance of the thermal resistance of the surface in the
determination of the thermal stability of the design.

Conclusion

‘The thermal stability of a flat wall and a cylindrical wall,
heated by convection and cooled by boiling, has been in-
vestigated. It has been shown that certain relative magnitudes
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Figure 11, Schematic diagram of system used to boil
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Figure 12. Stability envelope for pool boiling of methanol
on a copper disk heated by convection

of system parameters may result in instability when tran-
sition boiling oceurs, 7.e., when the heat flux and temperature
are such that the slope of the boiling curve is negative.
Specific conclusions are as follows.

1. For thermal stability of a flat wall

M @4

2. For thermal stability of a cylindrical wall with boiling
on the outside
E ok

Y

g :
M TN (36)
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- 3. For thermal 5t,ablhty of ‘& cylindrical wall with boiling
n the ms*xde k .

ko ko
Mry " hry + nn @7
4. The above conclusions may be reached by a lumped

parameter analysis only if the thermal capacitance of the wall
is taken to be concentrated at the boiling surface.

Besides obtaining solutions for these simple practical cases’

this paper has shown how problems of this type may be
approached by two techniques: lumped-parameter system
analysis and eigenfunction method using distributed param-
eters. These results have been verified using Liapunov meth-
ods by Pritchard (1971) and should help to establish a
thorough and versatile mathematical methodology for
dealing with the practically important, but neglected, subject
of thermal stability. It is an obvious step to extend the
methods to deal with systems (such as nuclear reactor fuel
elements) with variable properties, distributed heat sources;
and composite walls.
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Nomenclature
A = area
a = a constant

b = g constant

dimensionless parameter, k/hr,

dimensionless parameter, k/Mr,

a constant

specific heat, also used-as a constant

a constant

a constant

a function

a function

convective heat transfer coefficient, 7.e., rate of change
of heat flux with temperature dxfference assumed
constant

Iy = modified Bessel function of the first kind of order zero

S07 -yl © stg
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=
|

= modlﬁed Bessel function. Qf the se,;:ond kmd of ordsr N

=~
I

= modlﬁed Bessel function of the second kmd of order"

modlﬁed Bessel function of the second kind of order one”

thermal conductivity

rate of change of heat flux with temperature difference
for a boiling process; a function of surface tempera-
ture

a constant

spatial funetion

heat flux

dimensionless parameter, 7,/7;

spatial coordinate, cylindrical coordinate system

spatial coordinate, in direction of heat transfer

temperature

temperature perturbation

time

spatial coordinate, rectangular coordinate system

dimensionless parameter Bra

S
[
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a = thermal diffusivity
B8 = defined as Va/a a/a
p = density

SUBSCRIPTS

1,2 = the two boundaries of the wall
0, p = zeroes and poles

g -
I

z

e,

o
-
I

output and input

y
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